
BARing the System
New vulnerabilities in Coreboot & UEFI based systems

Presenting: Yuriy Bulygin (@c7zero), Oleksandr Bazhaniuk (@ABazhaniuk)

Andrew Furtak, John Loucaides, Mikhail Gorobets

Advanced Threat Research

Agenda

• Recap of SMM Pointer Vulnerabilities

• Intro to Memory-Mapped I/O

• MMIO BAR Issues

• MMIO BAR Issues in UEFI Firmware

• MMIO BAR Issues in Coreboot Firmware

• Limitations

• Mitigations

• Tools

• Conclusion

Recap of SMM pointer vulnerabilities

Pointer Arguments to SMI Handlers

Phys Memory

SMI Handlers in
SMRAM

OS MemoryRAX (code)

RBX (pointer) SMM communication buffer

Arguments IN, results OUT

SMI

“UEFI” ACPI

Comm Buffer

EDKII

EDKI

Via ACPI table

Directly in registers

Exploiting SMM pointers…

Phys Memory

SMI Handlers in
SMRAM

OS MemoryRAX (code)

Fake SMM comm buffer

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Exploit tricks SMI handler to write to an address in SMRAM (Attacking and Defending BIOS in 2015)

Comm Buffer

RBX (pointer)

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

Attacking hypervisors via SMM pointers…

Phys Memory

SMI Handlers in
SMRAM

OS MemoryRAX (code)

Fake SMM comm buffer

VMM protected page

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Comm Buffer

RBX (pointer)

Even though SMI handler check pointers for overlap with SMRAM, exploit can trick it to write to VMM

protected page (Attacking Hypervisors via Firmware and Hardware)

Example: SMIFlash SMI Handler

Reported by ATR to BIOS vendor in June 2014

Similar to publication by Sogeti ESEC Lab

http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html

SMI handlers now validate input pointers

 SMI handlers now validate pointer + offsets received from the OS for overlap with SMRAM before
using it (SmmIsBufferOutsideSmmValid). This does not block exploits using SMI handlers as

proxies to attack hypervisor pages (Hyper-V, Windows 10 Virtual Secure Mode)

 Most recently, EDKII implemented CommBuffer at fixed memory location to mitigate attacks on

hypervisors and reporting to Windows through the Windows SMM Mitigations ACPI Table (WSMT)

Memory-Mapped I/O (MMIO)

PCI Express

• PCI Express Fabric consists of PCIe components connected over PCIe

interconnect in a certain topology (e.g. hierarchy)

• Root Complex is a root component in a hierarchical PCIe topology with one or

more PCIe root ports

• Components: Endpoints (I/O Devices), Switches, PCIe-to-PCI/PCI-X Bridges

• All components are interconnect via PCI Express Links

• Physical components can have up to 8 physical or virtual functions

• Some endpoints are integrated into Root Complex

PCIe Config Space Layout

Source: PCI Express Base Specification Revision 3.0

PCI/PCIe Config Space Access

1. Software uses processor I/O ports CF8h (control) and CFCh (data) to access PCI

configuration of bus/dev/fun. Address (written to control port) is calculated as:

bus << 16 | dev << 11 | fun << 8 | offset & ~3

2. Enhanced Configuration Access Mechanism (ECAM) allows accessing PCIe

extended configuration space (4kB) beyond PCI config space (256 bytes)

 Implemented as memory-mapped range in physical address space split into

4kB chunks per B:D.F

 Register address is a memory address within this range

MMCFG base + bus*32*8*1000h + dev*8*1000h + fun*1000h + offset

100h bytes of

CFG header
8 * 100h

per device

32* 8 * 100h

per bus

Memory-Mapped I/O

• Devices need more space for registers

• Memory-mapped I/O (MMIO)

• MMIO range is defined by Base

Address Registers (BAR) in PCI

configuration header

• Access to MMIO ranges forwarded to

devices

MMIO vs DRAM

Low DRAM

SMM Memory

Graphics Memory

Low MMIO

Direct-mapped BIOS,

APIC, TPM…

MMIO

Memory

High DRAM Memory

Top of Low DRAM

4GB

BAR 1 – BAR n

ECAM

MMIO BARs

MMIO Range | BAR | Base | Size | En | Description

GTTMMADR | 00:02.0 + 10 | 00000000F0000000 | 00400000 | 1 | Graphics Translation Table Range

SPIBAR | 00:1F.0 + F0 | 00000000FED1F800 | 00000200 | 1 | SPI Controller Register Range

HDABAR | 00:03.0 + 10 | 0000007FFFFFF000 | 00001000 | 1 | HD Audio Register Range

GMADR | 00:02.0 + 18 | 00000000E0000000 | 00001000 | 1 | Graphics Aperture

DMIBAR | 00:00.0 + 68 | 00000000FED18000 | 00001000 | 1 | Root Complex Register Range

MMCFG | 00:00.0 + 60 | 00000000F8000000 | 00001000 | 1 | PCI Express Register Range

RCBA | 00:1F.0 + F0 | 00000000FED1C000 | 00004000 | 1 | PCH Root Complex Register Range

MCHBAR | 00:00.0 + 48 | 00000000FED10000 | 00008000 | 1 | Memory Controller Register Range

...

MMIO Range Relocation

• MMIO ranges can be relocated at runtime by the OS

• OS would write new address in BAR registers

• Certain MMIO ranges cannot be relocated at runtime

• Fixed (e.g. direct-access BIOS range)

• Or locked down by the firmware (e.g. MCHBAR)

MMIO BAR Issues

Firmware use of MMIO

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

Firmware configures chipset and devices

through MMIO

SMI handlers communicate

with devices via MMIO registers

MMIO BAR Issue

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

SMI

Exploit with PCI access can modify BAR

register and relocate MMIO range

On SMI interrupt, SMI handler firmware

attempts to communicate with device(s)

It may read or write “registers” within

relocated MMIO

Examples of MMIO BARs accessed in SMM

• EHCI (USB 2.0) controller MMIO BAR (B0:D26:F0, B0:D29:F0)

• GBe LAN MMIO BAR (B0:D25:F0)

• Root Complex Block Address (RCBA) on earlier platforms (B0:D31:F0)

• SPI BAR on Skylake or later generations (B0:D31:F5)

• AHCI (SATA) controller MMIO BAR (B0:D31:F2, B0:D31:F5)

• xHCI (USB 3.0) controller MMIO BAR (B0:D20:F0)

• Integrated Graphics Device MMIO BAR (B0:D2:F0)

• B1:D0.F0 MMIO BAR

• …

SPI Controller MMIO BAR (Access to SPI Flash)

chipsec_util.py uefi var-write B 55555555-4444-3333-2211-000000000000 B.bin

chipsec_util.py mmio dump SPIBAR

SPI Flash Data

(Variable contents)

SPI Status and Control

SPI Flash Address (address

variable is written to in flash)

Finding MMIO BAR issues at runtime

Goal: Find all MMIO registers modified by SMI handler

1. Dump MMIO range

2. Trigger SMI

3. Dump MMIO range and compare all registers

Problem: many registers are modified by devices all the time! Up to 30,000

registers change in Graphics Device MMIO

Finding MMIO BAR issues at runtime

Goal: Find all MMIO registers modified by SMI handler

1. Dump MMIO range multiple times

2. Find all registers which frequently change without SMM

3. Dump MMIO range

4. Trigger SMI

5. Dump MMIO range and compare all registers

6. Find registers which don’t normally change

7. Repeat this multiple times to confirm suspected registers are actually being modified in SMM

8. Copy original contents of MMIO range to memory

9. Relocate MMIO range (change its base address) to this memory

10. Generate SMI

11. Monitor changes in memory at suspected offsets

Monitoring changes in

USB MMIO BAR

MMIO BAR Issues in UEFI Firmware

Finding MMIO BAR issues in binaries

1. Consider MMIO BAR (MBARA) of GBe LAN device (B0:D25:F0) at offset 0x10

2. Legacy PCIe config address is

(25<<11) + 0x10 = 0xC810

0x8000C810 if with Enable bit (31) set

3. Memory-mapped ECAM address is ECAM base + offset to 4kB page of

B0:D25:F0 + BAR register offset

0xF8000000 + 0xC8010 = 0xF80C8010

4. Look for these constants in the binaries of SMI handlers

GBe LAN MMIO BAR (B0:D25:F0)

Read GBe MMIO BAR register from MMCFG:
0xF8000000 + 0x19<<15 + 0x10 =

0xF80C8010

Access to MBARA

MMIO registers

GBe LAN MMIO BAR (B0:D25:F0)

Access to unchecked

MBARA MMIO

EHCI MMIO BAR (B0:D29:F0)
Calculate EHCI BAR register address

in MMCFG:
0xF8000000 + 0x1D<<15 + 0x10

Read EHCI MMIO BAR

Modify MMIO register
0x20 in EHCI MMIO

range

Finding MMIO BAR issues in binaries

Identify functions reading PCI config registers via legacy or ECAM access and

find ones reading BAR registers using above constants

Access to register 0x88 in B0:D31:F0Legacy PCI config read

Extended PCIe config access through MMCFG

MMIO BAR Issues in Coreboot Firmware

Finding MMIO BAR issues in the source code

1. Find functions within SMI handlers which read MMIO BAR PCI config registers

(offsets 0x10-0x24 or chipset specific offsets for integrated devices)

 BAR registers can be read using memory-mapped config reads (offsets in ECAM memory

space). In this case, normal memory reads will be used

2. Find all memory accesses to offsets off of BAR addresses within SMI handlers

3. Can often search the names of the BAR registers and MMIO ranges (e.g.

SPI_BAR0, RCBA/RCRB, PCI_BASE_ADDRESS etc.)

mainboard_io_trap_handler SMI handler
bar pointer points to

MMIO range of device

B1:D0.F0 which can be

modified by an attacker

SMI handler then uses bar

pointer to write to
LVTMA_BL_MOD_LEVEL

offset (when adjusting

brightness level)

SMI handler can be invoked by

properly configuring I/O Trap

hardware with
BRIGHTNESS_UP/DOWN function

southbridge_smi_sleep SMI handler

reg_base pointer points

relocateable IGD MMIO

SMI handler then uses
reg_base to read-modify-

write PP_CONTROL register

Vulnerable backlight_off is

invoked when system goes to S5

Limitations

1. Exploit can overwrite specific offsets off of aligned addresses

• MMIO ranges are typically normally (size) aligned

• Most MMIO ranges are 4kB large (Graphics MMIO is 2-4MB)

• Example: 16kB aligned Root Complex Base + 0x38xx (SPI registers)

• PCI architecture allows MMIO ranges as small as 16 bytes

2. Exploit may not be able to control values written

• Firmware SMI handlers typically write specific values to MMIO registers

• Often do Read-Modify-Write: reg +/- 0x10

• Certain SMI handler may write attacker-supplied data

• SetVariable SMI handler write contents of UEFI variable supplied by the OS to

SPI_DATAx registers in SPIBAR MMIO range

Limitations

1. Many conditions for SMI handler to start communicating with I/O
device/controller
 Device present/enabled, mode/feature supported

 Is platform in ACPI mode?

 Other SMM code may also use fake MMIO (and hang)

 SMI may get triggered on difficult events – power button, on S3 resume, etc.

2. Often, SMI handlers implement protocol rather than just reading or writing to
MMIO registers
 IF Bit X in Reg1 is set THEN Write to Reg2

 Poll until certain bits are set/cleared in MMIO register (wait until SPI cycle complete)

 When SMI handler waits for the device to respond or cycle to complete then it’ll hang
after MMIO BAR is relocated

3. Non PCI-architectural BAR registers are locked down by boot firmware and
cannot be relocated (MCHBAR, DMIBAR etc.)

Mitigations

Option 1. SMI handlers can verify MMIO BAR doesn’t overlap with SMRAM

Option 2. Firmware can verify that MMIO BAR is not in DRAM (e.g. between

TOLUD and 4GB or above TOUUD). This would ensure all BARs used by

firmware are within MMIO

Option 3. Firmware can reserve default MMIO range for all BARs. Before

accessing MMIO range, SMI handlers can relocate BARs to the default range if

they point to somewhere else

SPIBAR Mitigation Example

• On latest platforms, SPI MMIO is a separate 4kB range rather than a part of

Root Complex MMIO

• Firmware reserves 0xFE010000 page for SPI MMIO and programs

SPI_BAR0 register in SPI controller with this address.

• On any PCH SMI, SMI handler checks SPI_BAR0 and restores it to
0xFE010000 if it’s been relocated.

Relocating SPI BAR

to memory
var-write triggers SMI

writing variable to SPI

BAR. It succeeded!

SMI handler restored SPI

BAR to the original location

Tools to assist in finding/analyzing these issues

tools.smm.rogue_mmio_bar

Attempts to create fake MMIO ranges in memory, relocate hardware MMIO

BARs to the fake memory, then observe changes made by SMI handlers in

relocated MMIO ranges

tools.smm.bar

Simply monitors changes made by SMI handlers in MMIO registers of specified

MMIO BARs

Conclusion

• The root cause is that firmware assumes hardware is trusted

• Hardware registers like PCI Base Address Registers can be

modified by runtime software (some are locked down)

• Firmware shouldn’t assume addresses in BAR registers are

correct and should treat them as untrusted input

• Boot firmware should also validate contents of BAR registers upon

resume from sleep if it restores them from S3 boot script

Thank You!

